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Abstract
The ambipolar lateral diffusion of photo-induced charge carriers restricted in
a plane of a quantum well (QW) under a moderate (non-quantizing) magnetic
field is studied theoretically in the framework of the drift-diffusion model. The
continuity equation for this case is solved exactly. The analytical expressions
for the concentration of photo-induced electrons and the built-in electric field
in the practically important cases of uniform and bell-shaped light beams are
obtained in a closed form. It is shown that the ambipolar lateral diffusion of
photo-induced charge carriers can be suppressed in InGaAs/GaAs QWs by a
moderate magnetic field of ∼0.5 mT.

1. Introduction

Carrier diffusion plays an important role in the investigation and design of semiconductor
optoelectronic devices, especially lasers and light-emitting diodes (LEDs) [1]. In
heterostructures the potential profile and carrier transport can be tailored in the growth
direction, while in the layers plane transport is determined by diffusion [1]. An imbalance
of electron and hole concentrations can produce an electric field which causes a drift term
in the total current density. The transport of photo-excited charge carriers in an undoped
semiconductor under conditions of charge neutrality and the absence of current includes both
diffusion and drift processes and results in ambipolar diffusion [1]. In recent decades, carrier
diffusion in InGaAs/GaAs quantum wells (QWs) restricted in a plane has been experimentally
investigated using different techniques such as cathodoluminescence, the transient-grating
method and the high resolution time-of-flight technique (see [1–6] and references therein). The
measured value of the QW ambipolar diffusion length Lambi is shown to be about 2.7 µm [1].
Significant in-plane diffusion in high quality InGaAs/GaAs QWs results in deterioration of their
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current–voltage and light–current characteristics [1]. The diffusion length limits the active
device diameter in QW vertical-cavity surface emitting lasers (VCSELs) [1] and increases
threshold currents in QW laser diodes [5]. The control of carrier diffusion is essential for the
fabrication of efficient LEDs and lasers with dimensions in the submicrometre scale, especially
for the realization of ultralow threshold lasers and single quantum dot (QD) LEDs to be used as
single-photon sources for quantum communications [1]. The proposed methods for suppression
of carrier diffusion are all of a technological nature, such as replacement of QWs with QDs and
disordered QWs [1].

The theoretical approach to the problem of lateral diffusion is based on the classical drift-
diffusion model for electron–hole plasma in semiconductors [7, 8]. The in-plane motion of
charge carriers in QWs can be considered classically because the electron energies within QWs
consist of the confined-state energy arising from the spatial quantization in the direction normal
to the interface and the free-electron energies in the directions parallel to the interface [9].
Previously, the analysis was carried out for the case without external fields [5, 6]. Comparison
between these calculations and the experimental data showed a good agreement [5]. The
peculiarities of the lateral diffusion of carriers in applied external fields are interesting [2].
Study of the diffusion of optically generated carriers in the presence of a magnetic field
should yield new insights into electronic magnetotransport in low-dimensional semiconductors.
However, to the best of our knowledge, the influence of the magnetic field on the lateral
diffusion of photocarriers in heterostructures has not yet been investigated theoretically.

In this paper we have studied the lateral ambipolar diffusion of photocarriers in a uniform
constant magnetic field B, taking into account the spatial distribution of the light beam. The
theoretical investigation concerns the lateral motion of three-dimensional (3D) electrons and
holes in an optically induced inhomogeneity with two-dimensional (2D) symmetry. We have
limited our analysis to moderate non-quantizing magnetic fields. The analytical solutions in
a closed form have been obtained for both uniform and bell-shaped beams. We evaluated the
built-in electric field E. We have shown that the lateral diffusion of carriers in InGaAs/GaAs
QWs can be confined to a region with a dimension Lambi � 0.5 µm by using a moderate
magnetic field B ∼ 0.5 mT perpendicular to the plane of the layers.

The paper is constructed as follows. In section 2, the ambipolar diffusion equation in
the presence of an optical beam and the magnetic field is derived. The closed-form analytical
expressions for the electron concentration and the built-in electric field for the general case and
for practically important cases of uniform and bell-shaped light beams are obtained in section 3.
Conclusions are presented in section 4. The evaluation of the necessary integrals is presented
in the appendix.

2. Ambipolar diffusion of the photo-induced charge carriers in a magnetic field

We start with the continuity equations for electron and hole concentrations n and p [7]. They
have the form

∂n

∂ t
= −div Fn + Gn − Rn,

∂p

∂ t
= −div Fp + G p − Rp (1)

where Fn = −jn/q = vnn, Fp = jp/q = vp p are the electron and hole flux densities, jn,p

are the electron and hole current densities, Gn,p and Rn,p are the electron and hole generation
and recombination rates, vn,p are the electron and hole velocities, respectively, and q is the
magnitude of the electron charge. For photo-generation, the generation rate has the form [7, 10]

Gn = G p = (1 − R) α
ηI (r)

hν
exp (−αz) (2)
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where R is the reflection coefficient at the surface of the semiconductor layer, α is the material
absorption coefficient, η, I (r), h, ν are the quantum efficiency, the light beam intensity, the
Planck constant and the photon frequency, respectively, and coordinates (r, z) are chosen
to be in the layer plane and perpendicular to it, respectively. The absorption coefficient
α ∼ 104 cm−1 for GaAs [11] for the frequencies ν such that hν � Eg, where Eg is the
semiconductor energy gap. Hence, for nano-layers with a thickness d � 1/α the dependence
of all variables on z in the radial diffusion equation can be neglected [12], and the exponential
factor in equation (2) exp(−αz) ∼ 1 can be dropped. As a result, the analysis of 3D electron
and hole motion reduces to the analysis of their lateral components.

In the framework of the hydrodynamic model, the electron and hole velocities vn,p are
determined by the following equations of motion in an inhomogeneous plasma, in the presence
of an external magnetic field B = az B and a built-in electric field E = (ax Ex +ay Ey) = −∇V ,
where ax,y,z are the unit vectors and V is a scalar potential [8]:

m∗
n,p

[
∂vn,p

∂ t
+ (

vn,p ·∇)
vn,p

]
= ∓q

{
E+ [

vn,p × B
]} − fn,p − m∗

n,p

vn,p

τn,p
. (3)

Here fn = n−1∇ Pn , fp = p−1∇ Pp, and m∗
n,p, τn,p, Pn = kBT n, Pp = kBT p are the

electron and hole effective masses, the electron and hole lifetimes, the pressures of electrons
and holes, respectively, T is the temperature and kB is the Boltzmann constant. When the
time of radiation �trad is sufficiently large compared to the electron and hole recombination
times �trad � τn, τp, the situation is assumed to be steady-state (∂/∂ t = 0). In the first
approximation, the nonlinear terms in equation (3) can be ignored. The lifetime dependence
on the carrier concentration can be neglected [1, 2, 5]. Under the influence of the transverse
magnetic field, the charge carriers start moving in directions perpendicular to their initial
trajectories, thus reducing their free path.

Decomposing vector equation (3) we obtain the linear equations for the electron and hole
velocity components vnx,y and vpx,y

kBT

m∗
nn

∂n

∂ri,k
− q

m∗
n

vnk,i B + q

m∗
n

∂V

∂ri,k
− 1

τn
vni,k = 0 (4)

kBT

m∗
p p

∂p

∂ri,k
+ q

m∗
p

vpk,i B − q

m∗
p

∂V

∂ri,k
− 1

τp
vpi,k = 0 (5)

where ri = x , rk = y and the indices i, k stand for x, y. Substituting the solutions of
equations (4) and (5) vnx,y and vpx,y into equation (1) in the steady-state case, assuming radial
symmetry of both the photocarrier concentrations n(r), p(r) and the electric field potential
V (r) due to the radial symmetry of the radiation beam (2) and transforming the Cartesian
coordinates (x, y) to the cylindrical ones we obtain the following equation:

−Dn,p
1

r

∂

∂r

(
r
∂Cn,p

∂r

)
± µn,p

1

r

∂

∂r

(
rCn,p

∂V

∂r

)
= (

Gn − Rn,p
) (

1 + ω2
cn,pτ

2
n,p

)
(6)

where ωcn,p = q B/m∗
n,p, µn,p and Dn,p = µn,pkBT/q are the electron and hole cyclotron

frequencies, mobilities and diffusion coefficients, respectively, Cn ≡ n, Cp ≡ p and the
following identities for the radially symmetric case are taken into account:

∂V (r)

∂y

∂Cn,p (r)

∂x
− ∂V (r)

∂x

∂Cn,p(r)

∂y
= 0. (7)

In the typical case of photocarrier generation the following conditions are valid [10]:

n = n0 + nph, p = p0 + pph, nph = pph (8)

nph � n0 = const, pph � p0 = const (9)
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and Rn,p = nph/τn,p, where n0, p0 are the equilibrium carrier concentrations. In the particular
case of n-type GaAs, the equilibrium hole concentration p0 � n0, and only the first inequality
of conditions (9) is essential. In the case of lateral diffusion it is helpful to replace the
carrier concentration per unit volume with the concentration per unit area, or sheet carrier
density [5] nph2D, as follows: nph2D = dnph. Then, substituting conditions (8), (9) and nph2D

into equation (6), multiplying these equations by µp and µn and adding them we obtain the
ambipolar lateral diffusion equation for electron gas in the magnetic field:

1

u

∂

∂u

(
u

∂nph2D

∂u

)
− nph2D = −N2D (u) (10)

where the dimensionless variable u = r/Lambi, the ambipolar diffusion length Lambi and the
photon surface density N2D(u) are given by

L2
ambi = (n0 + p0) L2

peff L
2
neff(

p0L2
peff + n0 L2

neff

) ; N2D (u) = (1 − R) αd
ηI (u) 〈τ 〉

hν
. (11)

Here Lneff, Lpeff and 〈τ 〉 are the effective electron and hole diffusion lengths in the magnetic
field and the effective photocarrier lifetime given by

L2
n,peff = Dn,pτn,p(

1 + ω2
cn,pτ

2
n,p

) ; 〈τ 〉 = τpn0 L2
neff + τn p0L2

peff

p0L2
peff + n0 L2

neff

. (12)

For the n-type material with n0 � p0, Lambi ≈ Lpeff, and in the opposite case Lambi ≈ Lneff.
For τn ∼ τp = τ and n0 = p0, expressions (11) and (12) yield for Lambi and 〈τ 〉 in the limiting
case ω2

cn,pτ
2
n,p � 1

Lambi ≈
√

2Dn Dp

τ
(
Dnω2

cp + Dpω2
cn

) ; 〈τ 〉 ≈ τ. (13)

The dependence of Lambi on the magnetic field B is presented in figure 1 for typical values
of material parameters for GaAs [1, 5, 11] n0 = 2 × 1018 cm−3, τn = τp = 3 × 10−9 s,
µn = 8000 cm2 V−1 s−1, µp = 400 cm2 V−1 s−1, m∗

n = 0.067m0, m∗
p = 0.45m0 where m0 is

the free-electron mass. It is seen that Lambi ∼ 0.5 µm can be reached at a moderate magnetic
field B ∼ 0.5 mT.

3. Evaluation of the photocarrier concentration and the built-in electric field

3.1. General solution of the ambipolar diffusion equation

Inhomogeneous equation (10) can be solved by using the Hankel transformation given for a
function f (u) by [13]

f̃ (ξ) =
∫ ∞

0
u f (u)J0 (ξu) du; f (u) =

∫ ∞

0
ξ f̃ (ξ)J0 (ξu) dξ (14)

where J0(x) is a Bessel function of the first kind of zeroth order [14]. Integrating the left-hand
side of equation (10) by parts and using the properties of the Bessel function we obtain

ñph2D (ξ) = Ñ2D (ξ)

(ξ 2 + 1)
(15)

where ñph2D(ξ) and Ñ2D(ξ) are the Hankel transforms (14) of the quantities nph2D(u) and
N2D(u). The solution of equation (10) can be obtained by using the inverse Hankel transform
defined by the second expression of (14):

nph2D(u) =
∫ ∞

0
ξ

Ñ2D(ξ)

(ξ 2 + 1)
J0(ξu) dξ. (16)
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B, tesla
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Figure 1. The dependence of the ambipolar diffusion length Lambi on the magnetic field B .

Substituting the integral representation of Ñ2D (ξ) (14) into expression (16) and changing the
order of integration we obtain

nph2D(u) =
∫ ∞

0
u1 N2D(u1) du1	 (u, u1) (17)

where the internal integral 	 (u, u1) in expression (17) is known [15]

	 (u, u1) =
∫ ∞

0

ξ(
ξ 2 + 1

) J0 (ξu) J0 (ξu1) dξ =
{

I0(u)K0(u1), u1 > u

I0(u1)K0(u), u1 < u.
(18)

Here Iν(u) and Kν(u) are the modified Bessel functions of order ν [14, 15].
Taking into account relationships (9)–(12) and eliminating nph2D from the continuity

equation (6) we obtain the following expression for the radial component of the built-in electric
field Er = −∂V/∂r .

Er = Er0

[
A1

u

∫ u

0
u1 N2D(u1) du1 + A2

∂nph2D

∂u

]
(19)

where Er0 = kBT/qd and

A1 = Lambi
(
τp − τn

)
(
τpn0 L2

neff + τn p0L2
peff

) ; A2 =
(

L2
peff − L2

neff

)
(

L2
neffn0 + L2

peff p0

)
Lambi

. (20)

3.2. The uniform light beam

Consider first the case of a uniform light beam given by

N2D(u) =
{

N0, u � u0

0, u > u0
(21)

where u0 = r0/Lambi, and r0 ∼ (5–10) µm is the radius of the light beam. For a photon
flux density per unit area [10] 1018 photon cm−2 s−1, 〈τ 〉 ∼ 10−9 s and N0 ∼ 109 cm−2,
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condition (9) is valid for a sheet carrier density [1, 2] n02D ∼ (1011–1012) cm−2. Substituting
expression (21) into expressions (17) and (19) we obtain

nph2D(u) = N0

∫ u0

0
u1 du1	(u, u1) (22)

Er (u) = Er0 N0 ×




[
A1u

2
+ A2

∂

∂u

(∫ u0

0
u1 du1	 (u, u1)

)]
, u � u0[

A1u2
0

2u
+ A2

∂

∂u

(∫ u0

0
u1 du1	 (u, u1)

)]
, u > u0.

(23)

The first term in expressions (27) is due to the space charge distribution inside and outside the
beam region and is similar to the field of a dielectric cylinder filled with the space charge. It
vanishes in the particular case when τp −τn = 0. The second term in expressions (27) is caused
by the inhomogeneity of the photocarrier concentration.

Consider first the solution inside the beam region u � u0. Substituting results (18) into
expression (22) we obtain

nph2D(u) = N0

[
K0(u)

∫ u

0
u1 du1 I0 (u1) + I0(u)

∫ u0

u
u1 du1K0 (u1)

]
. (24)

The integrals in expression (24) are easily evaluated by virtue of the identities [15]

z
d

dz
Kν(z) + νKν(z) = −zKν−1(z); z

d

dz
Iν(z) + ν Iν(z) = z Iν−1(z). (25)

The result is given by

nph2D(u) = N0 [1 − u0 K1 (u0) I0(u)] . (26)

Substituting expression (26) into the first of formulae (23) we obtain for the built-in electric
field in the region u � u0

Er (u) = Er0 N0

[
A1u

2
− A2u0K1(u0)I1(u)

]
. (27)

Outside the beam region for u > u0, we obtain for the electron concentration, using the second
expression of (18),

nph2D(u) = N0 K0(u)

∫ u0

0
u1 du1 I0(u1) = N0u0 I1(u0)K0(u). (28)

Substituting expression (28) into the second of formulae (23) we get

Er (u) = Er0 N0u0

[
A1u0

2u
− A2 I1(u0)K1(u)

]
. (29)

Using the asymptotic expression of the modified Bessel functions [14, 15] Kν(u) ∼√
π/(2u) exp(−u) we obtain the following expressions for the electron concentration nph2D(u)

and the built-in electric field Er (u) at large distances u � u0 > 1 from the beam:

nph2D(u) ≈ N0u0 I1(u0)

√
π

2u
exp(−u) (30)

Er (u) ≈ Er0 N0u0

[
A1u0

2u
− A2 I1(u0)

√
π

2u
exp (−u)

]
. (31)

The normalized electron concentration nph2D(u)/N0 for a uniform beam is shown in figure 2.
For typical values of Lambi, the parameter u0 � 1. The profile of the electron concentration is
determined by the radius of the beam. The built-in electric field Er (u) for B = 5 × 10−4 T and
B = 10−3 T, τn ∼ τp ∼ 10−9 s,

∣∣τp − τn

∣∣ ∼ 10−9 s and u0 = 10 is shown in figure 3. The
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0
0 2.5 5 7.5 10 12.5 15u

u0=5

nph2D(u)/N0

u0=8

u0=10

Figure 2. The normalized 2D concentration of electrons nph2D/N0 for the uniform light beams with
u0 = 5; 8; 10.

Er(u), V/cm

0.005

0.045

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0
0 2 4 6 8 10 12 14u

B = 10–3 tesla

B = 5 × 10–4tesla

0.04

Figure 3. The built-in electric field Er (u) for B = 5 × 10−4 T; 10−3 T, τn − τp = 0, u0 = 10.

coefficient A2 in expressions (27) and (29) can change sign with the increase in the magnetic
field because ωcp � ωcn , which results in the suppression of the electric field in the region of
the beam as can be seen from figure 3. In the particular case τp − τn = 0 the coefficient A1

vanishes. The remaining electric field is shown in figure 4.

3.3. A bell-shaped light beam

Consider now a bell-shaped light beam which can be approximated with the modified Bessel
function K1(u)

N2D(u) = N0uγ K1(γ u) (32)

where γ is a dimensionless fitting parameter. The normalized distributions N2D(u)/N0 for
different values of γ are shown in figure 5. Substituting expression (32) into expression (14)
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Er(u), V/cm

u

B = 10–3 tesla

B = 5 × 10–4tesla

0.025
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0.015

0.01

0.005

0
0 2 4 6 8 10 12 14

–0.005

–0.01

–0.015

–0.02

–0.025

Figure 4. The built-in electric field Er (u) for B = 5 × 10−4 T; 10−3 T, τn − τp = 0, u0 = 10.

u

γ = 3
γ = 2

γ = 1

1

0.75

0.5

0.25

0

0 2.5 5 7.5 10

γ = 0.5

N2D(u)/N0

Figure 5. The normalized profile of the bell-shaped light beam N2D/N0 for γ = 0.5; 1; 2; 3.

we obtain the following expression

Ñ2D(ξ) = γ N0

∫ ∞

0
u2K1(γ u)J0(ξu) du. (33)

The integral in (33) is given by [15]∫ ∞

0
u2K1(γ u)J0(ξu) du = 2γ 2

(
ξ 2 + γ 2

)2 . (34)

Substituting the results (33) and (34) into expression (16) we obtain

nph2D(u) = 2γ 2 N0

∫ ∞

0

ξ(
ξ 2 + 1

) (
ξ 2 + γ 2

)2
J0(ξu) dξ. (35)

Evaluation of the integral in expression (35) is presented in the appendix. It yields

nph2D(u) =




2γ 2 N0(
1 − γ 2

)
{[

K0(u) − K0(γ u)
]

(
1 − γ 2

) + uK1(γ u)

2γ

}
, γ = 1

N0

(u

2

)2
K2(u), γ = 1.

(36)
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We evaluate the built-in electric field Er by substituting expressions (32) and (36) into
expression (19). We obtain the following results for the case when γ = 1:

Er (u) = Er0 N0

{
A1

u

∫ u

0
u2

1γ K1(γ u1) du1 + A2
2γ 2

(1 − γ 2)

× ∂

∂u

( [K0(u) − K0(γ u)]
(1 − γ 2)

+ uK1(γ u)

2γ

)}
. (37)

Expression (37) can be easily evaluated by using identity (25). The resulting expression takes
the form

Er (u) = Er0 N0

{
A1

uγ 2

[
2 − (γ u)2 K2(γ u)

]

+ 2A2γ
2

(
1 − γ 2

)2

[−K1(u) + γ K1(γ u)
] − A2γ

2(
1 − γ 2

)uK0 (γ u)

}
. (38)

It should be noted that Er (0) = 0, since for u → 0 the first term in (38) vanishes:
limz→0[(2 − z2 K2(z))/z] = 0 [15]. At large distances from the beam u � u0 > 1 we
obtain for γ = 1, using the asymptotic expression [14, 15] for Kν(u),

nph2D(u) ≈
√

2πγ 2 N0(
1 − γ 2

)
{

exp(−u) − (√
γ
)−1

exp (−γ u)(
1 − γ 2

)√
u

+
√

u exp (−γ u)

2γ 3/2

}
(39)

Er (u) ≈ Er0 N0

{
A1

γ 2u

[
2 − (γ u)3/2

√
π

2
exp (−γ u)

]

+ A2γ
2
√

2π
[√

γ exp (−γ u) − exp(−u)
]

(
1 − γ 2

)2 √
u

− A2γ
3/2(

1 − γ 2
)
√

πu

2
exp (−γ u)

}
. (40)

In the case when γ = 1, the built-in electric field Er is given by

Er (u) = Er0 N0

{
A1

u

[
2 − u2K2(u)

] − A2
u2

4
K1 (u)

}
. (41)

The asymptotic expressions for nph2D and Er for γ = 1 are given by

nph2D(u) ≈ N0u3/2

4

√
π

2
exp(−u) (42)

Er (u) ≈ Er0 N0

{
A1

u

(
2 − u3/2

√
π

2
exp(−u)

)
− A2u3/2

4

√
π

2
exp(−u)

}
. (43)

The normalized electron concentration nph2D/N0 and the built-in electric field Er (u) for the
bell-shaped beams with γ = 0.5; 1; 2; 3 for B = 5 × 10−4 T and τp − τn = 0 are presented
in figures 6 and 7, respectively. It is seen that in this case the electrons are mainly concentrated
in the region r < Lambi. The built-in electric field is also rapidly decreasing for r > Lambi.
However, it is larger than in the case of a uniform beam. The built-in electric field Er (u) in
the particular case when A1 = 0 is slightly lower and decreases with the distance much more
rapidly then in the general case determined by expressions (38), (40) and (41) because the
slowly varying term ∼u−1 vanishes.
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Figure 6. The normalized 2D concentration of electrons nph2D/N0 for the bell-shaped light beams
with γ = 0.5; 1; 2; 3.
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Figure 7. The built-in electric field Er (u) for the bell-shaped light beams with γ = 0.5; 1; 2; 3.
B = 5 × 10−4 T, τn − τp = 0.

4. Conclusions

For the first time we have investigated theoretically the lateral diffusion of photo-induced
carriers in a nano-layer subjected to a uniform transverse magnetic field. The ambipolar
diffusion equation for the photo-induced carriers in the magnetic field has been solved
analytically and the expressions for the distribution of the electron concentration and the built-
in electric field have been obtained in a closed form for the two practically important cases: for
uniform and bell-shaped light beams. It is shown that lateral diffusion of the carriers can be
suppressed by a moderate magnetic field perpendicular to the plane of the layers. The ambipolar
diffusion length may be decreased to 0.5 µm by using B ∼ 0.5 mT.
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Appendix. Evaluation of the integral

We wish to evaluate the following integral:

i =
∫ ∞

0

ξ

(ξ 2 + 1)
(
ξ 2 + γ 2

)2 J0(ξu) dξ. (A.1)

For γ = 1, the factor ξ(ξ 2 + 1)−1(ξ 2 + γ 2)−2 in the integrand can be decomposed into simple
fractions as follows:

1

(ξ 2 + 1)
(
ξ 2 + γ 2

)2 = 1(
1 − γ 2

)2

[
1(

ξ 2 + 1
) − 1(

ξ 2 + γ 2
)
]

+ 1(
1 − γ 2

) (
ξ 2 + γ 2

)2 . (A.2)

Substituting expression (A.2) into (A.1) we obtain

i = 1(
1 − γ 2

)2

∫ ∞

0

J0(ξu)ξ

(ξ 2 + 1)
dξ − 1(

1 − γ 2
)2

∫ ∞

0

J0(ξu)ξ(
ξ 2 + γ 2

) dξ

+ 1(
1 − γ 2

)
∫ ∞

0

J0(ξu)ξ(
ξ 2 + γ 2

)2
dξ. (A.3)

Each of the three integrals in (A.3) reduces to the standard integral of the type [15]∫ ∞

0

Jν (bx) xν+1

(
x2 + a2

)µ+1
dx = aν−µbµ

2µ� (µ + 1)
Kν−µ (ab) (A.4)

where � (µ + 1) is the gamma function [15]. Substituting (A.4) into (A.3) and taking into
account the identity K−ν(z) = Kν(z) [14, 15] we obtain

i =
[
K0(u) − K0(γ u)

]
(
1 − γ 2

)2
+ uK1(γ u)

2γ
(
1 − γ 2

) . (A.5)

In the case when γ = 1 integral (A.1) reduces to the standard form (A.4) and can be written
immediately as∫ ∞

0

ξ

(ξ 2 + 1)3
J0(ξu) dξ = u2 K2(u)

8
(A.6)

where a = 1, b = u, µ = 2 and ν = 0.

References

[1] Fiore A, Rossetti M, Alloing B, Paranthoen C, Chen J X, Geelhaar L and Riechert H 2004 Phys. Rev. B 70 205311
[2] Smith L M, Wake D R, Wolfe J P, Levi D, Klein M V, Klem J, Henderson T and Morkoc H 1988 Phys. Rev. B

38 5788
[3] Tsen K T, Sakey O F, Halama G and Tsen S-C Y 1989 Phys. Rev. B 39 6276
[4] Zarem H A, Sercel P C, Lebens J A, Eng L E, Yariv A and Vahala K J 1989 Appl. Phys. Lett. 55 1647

http://dx.doi.org/10.1103/PhysRevB.70.205311
http://dx.doi.org/10.1103/PhysRevB.38.5788
http://dx.doi.org/10.1103/PhysRevB.39.6276
http://dx.doi.org/10.1063/1.102226


3828 B I Lembrikov et al

[5] Hu S Y, Corzine S W, Law K-K, Young D B, Gossard A C, Coldren L A and Merz J L 1994 J. Appl. Phys.
76 4479

[6] Strand T A, Thibeault B J and Coldren L A 1997 J. Appl. Phys. 81 3377
[7] Neamen D A 2003 Semiconductor Physics and Devices 3rd edn (New York: McGraw Hill)
[8] Vagner I, Lembrikov B I and Wyder P 2003 Electrodynamics of Magnetoactive Media (Berlin: Springer)

chapters 6, 7
[9] Brennan K F 1999 The Physics of Semiconductors (Cambridge: Cambridge University Press)

[10] Moss T S, Burrell G J and Ellis B 1973 Semiconductor Opto-Electronics (London: Butterworth)
[11] Howes M J and Morgan D V (ed) 1985 Gallium Arsenide. Materials, Devices and Circuits (New York: Wiley)
[12] McInerney J G 2003 Microwave Photonics ed A Vilcot, B Cabon and J Chazelas (Boston, MA: Kluwer) pp 23–51
[13] Korn G A and Korn T M 1968 Mathematical Handbook (New York: McGraw Hill)
[14] Abramowitz M and Stegun I A (ed) 1964 Handbook of Mathematical Functions (Washington, DC: National

Bureau of Standards)
[15] Gradshteyn I S and Ryzhik I M 2000 Table of Integrals, Series, and Products 6th edn (New York: Academic)

http://dx.doi.org/10.1063/1.357279
http://dx.doi.org/10.1063/1.365032

	1. Introduction
	2. Ambipolar diffusion of the photo-induced charge carriers in a magnetic field
	3. Evaluation of the photocarrier concentration and the built-in electric field
	3.1. General solution of the ambipolar diffusion equation
	3.2. The uniform light beam
	3.3. A bell-shaped light beam

	4. Conclusions
	Acknowledgments
	Appendix. Evaluation of the integral
	References

